
35 

tion of GLC and N M R data reported by us earlier.16 

The work presented clearly indicates that a very substan­
tial group of systems forming a new class of solutions has 
been identified. In view of their behavior we propose the 
name diachoric for such solutions. 
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where 0 represents volume fraction. It has been shown1 that 
this equation is incompatible with current theory,1,3 but can 
readily be derived whether solution of D in A or in S is ideal 
or nonideal on the basis that, although A and S are macro-
scopically miscible, they are microscopically immiscible. 
The major consequence of this is that the local concentra­
tions of A or S in a mixture are identical with those that 
each exhibits in the pure state. Correspondingly, the local 
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Abstract: It has been shown earlier that for 180 systems wherein a volatile solute (D) is partitioned at infinite dilution be­
tween a mixture of two liquids (A and S) and the gas phase, the partition coefficient (KR) is related to those for D with pure 
A (KR(A)°) and pure S (KR ( S ) 0 ) via the volume fraction (<t>) relationship KR = 0AKR (A)° + </>SKR(S)°. This result has been 
shown to describe systems where explicit interaction of D with A may be expected, as well as for those where this is not so. 
Further, it applies where D, A, and S are of widely differing chemical type and molecular weight. It has also been shown that 
the simplest model consistent with the above behavior is that in which A and S are microscopically immiscible, hence the 
suggested name microscopic partition (MP) theory. We now establish that, irrespective of the detail of any specific interac­
tion postulated to occur between D and A or S, the above equation can always be derived to describe overall behavior. Fur­
ther, if for specific interaction in A there is a true interaction equilibrium quotient (XV), it can be shown that KiexPu = 
(/CI1KR(A)0VKR(S)0) + (AKR01KAZKR(S)0) where KR (A)0 1 and KR(S)0 are the partition coefficients of unreacted D in A and 
S, respectively, AKR0 ' ' is their difference, and V\ is the molar volume of pure A. This two-term equation, which is also de­
rived for the case of uv-visible and NMR studies, establishes that even if Ki' = 0, a value of KiexP" can be determined in 
practice and may be negative of limiting value, — VA. The equation also provides a quantitative definition of solvent effects in 
complexing studies. Correlation equations are also presented which defme the relationship of purely solution (usually GLC) 
data and those of either uv-visible or NMR studies. Examples of the correlation of GLC and NMR data have been given 
previously; an example involving uv-visible and NMR data is given here. The origins of discrepancies in published data are 
indicated. 
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Figure 1. Diagrammatic illustration of the microscopic partition model 
(see text for definitions). 

concentrations of D in A or D in S are also those that would 
be relevant to pure A or S. We have called this theory the 
microscopic partition theory (MP) of solution, and suggest­
ed3 that liquid mixtures behaving according to eq 1 be 
called diachoric. 

In part I of this series' we developed the general equa­
tions for the GLC case, making no specific identification of 
the detailed interactions occurring in A-D or D-S mix­
tures. We were also able to predict, from solubility data 
alone, the nominal stability constants reported for 98 cases 
of reputed charge transfer or hydrogen bonding equilibria 
of the type: 

A + D ^ AD 

We then correlated the GLC and NMR approaches with 
considerable success in part II.2 

The majority of systems dealt with by us initially were of 
a type where some kind of specific interaction between D 
and A might be, or has been, postulated to occur. In part 
III,3 however, we have established that eq 1 applies equally 
to systems where no specific interactions can be visualized. 
As pointed out by us earlier,1 it therefore becomes a matter 
of importance to determine what, if anything, studies of 
weak complexing by partition or spectroscopic methods re­
veal. 

In this paper we develop MP theory in more detail in 
order to ascertain whether or not, on this basis, true stabili­
ty constants can be determined by GLC, by NMR, or by 
uv-visible methods, now so widely employed. This exercise 
is given point when it is recognized that all three methods 
depend on the effect of dilution of A (or D) by S, the inert 
solvent. In MP theory, of course, this dilution does not 
occur. We also now examine the generalized stoichiometric 
model for the interaction of D in A, and D in S, to ascertain 
the effects of multiple equilibria and solvation on the gener­
al relation given by eq 1. 

Theory 
The model relevant to what follows may be illustrated as 

in Figure 1. Solute D is partitioned between A and S and 
also between A and the gas phase and between S and the 
gas phase. The relevant partition coefficients (K) may be 
defined in terms of free (uncomplexed) D, in which case the 
relevant K carries the superscript t (true) or, alternatively, 

in terms of total D, i.e., the sum of uncomplexed and com-
plexed D. The relevant K for this situation, which is the 
"experimental" value, does not have superscript t but, for 
compatibility with GLC nomenclature, does carry a super­
script zero. 

The generalized equation which describes the equilibri­
um complexation reaction between A and D is given by 

nK + wD ^ A n D n (2) 

where m and n are the stoichiometric reaction coefficients, 
and are not necessarily integral values. We can also write a 
similar equation to describe the solution of D in S but, as we 
show later, no advantage is achieved by adding this compli­
cation at this point. 

The definitions corresponding to the model are as follows: 
(a) K R ( A)° = (wCeomP

A + CD
A)/CD*; (b) tfR(S)° = CD

S/ 
CD*; (c) KR(A)0'1 = CD

A/CD*; (d) KD = (CD
A + mCcomp

A)/ 
CD

S; (e) AV = C D A / C D
S = AR(A)0''/A-R(S)0; (O AY = 

Ccomp
A/(CAA) ' ,(CD

A) '". 
Here, C represents a molar concentration, subscripts des­

ignate a species, and superscripts designate the relevant sol­
vent (or gas). 

From (f) 

Ccomp
A = AV(CA°)"(CD

A) ' " (3) 

since, in pure A, CA
A = C A ° _ ( = K A

_ 1 ) , where CA° is the 
concentration of pure A, and KA is its molar volume. The 
concentration of complex, referred to the whole volume of 
the system, (KA + Ks), is then 

CcompA's = <M:i t(CA0)"(CD
A) ' " (4) 

where 4>\ is the volume fraction of A. 
The material balance for moles of D throughout the 

whole system ( « D A S ) is 

«DA 'S = «DA + «DS + W«COmpA (5) 

Dividing by (VA + Vs) gives 

CD
A S = 0ACD

A + <t>SCD
s + mCcomp^

s (6) 

But the overall partition coefficient of D between the whole 
solvent system (A + S) and the gas phase is 

KR = C D A - S / C D * 

Hence, 

m^K, 'ArR(A)0-t(CD
A)"'-1 

VA" 

(7) 

whence 

mKtl(CD
A)m-n 

KR = 0A^R(A)0 ,1 + 0S^R(S) 0 + 

KR — (PAKR (A) 
O.t 1 +-

KA" 
+ #SATR(S)° 

(8) 
Now, for the solvent A alone, Purnell4 has shown that the 

following equation relates AR(A)° to A-R(A)0'' and AV for 
the case of m:n complexing equilibria: 

mAV(CD
A) "*->"] 

KA" 
(9) ATR(A)0 = A-R(A)0'' [ 1 + 

Hence, we see that 

KR = 0AA"R(A)° + 4>SKR[S)° 

which is the equation (eq 1) previously derived by us on a 
more general basis and shown to have very wide applicabili­
ty. Obviously, had we postulated interaction between D and 
S the result would have been the same, although, of course, 
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KR(S) 0 would have been defined by a complex expression 
such as that for K R ( A ) ° in eq 9. 

We thus see that the MP theory accommodates, within 
its generalization, any stoichiometry of interaction in solu­
tion that may be occurring. Our general equation may thus 
be expected to apply where polynuclear complexing, hydro­
gen bonding, or any other type of solvation is postulated. 

For what now follows, we shall consider only the alge­
braically simple case of a 1:1 interaction of A with D. In the 
light of the above, this will clearly illustrate any points to be 
made. When « = m = 1, eq 9 reduces to 

*R = 4>A*R(A)0'' [ 1 + j£ J + </>s#R(S)° (10) 

The conventional GLC equation for the evaluation of stabil­
ity constants is 

KR = K R ( S ) ° [I + K1^CA**] 

Equating the foregoing then yields 

( H ) 

o,t 

*R(S)° K R(S)" 
(12) 

where 

A K R 0 ' ' = KR(A) 0 ' ' - KR(S)° 

I f K | l = 0, then obviously KR(A) 0 ' ' = K R ( A ) ° , as expected. 
Further, we see that K R ( A ) 0 ' ' and Ki ' cannot be separated, 
and so cannot be separately evaluated unless either can be 
determined in some other fashion. 

Uv-Visible. For the case of 1:1 complexing, in order to 
invoke the Beer-Lambert law, we require an expression for 
CCompA,s. Combining eq 6 and definitions (e) and (J) we 
may write: 

CD
A 'S - Ccomp

A- s = (C c o m p A /K 1 'C A
A ) (^ A + te/Ko1) 

(13) 

But, since the complex and A exist only in phase A, CCOmpA/ 
f . A = C • " • - ' « -
^ A ^ C i 'compA 's/CAA,s and so, on rearranging, 

„ A , S = . K , ' C A A ' S C D
A ' S K D ' 

^ com p </>s + 0 A K D ' + K 1 'C A
A ' s K D ' 

which, since the Beer-Lambert law is 

(14) 

A = tir A.s 

gives 

CD
A 'Se/ 4>s 

KSCA
A-S K, 'CA

A 'SKD ' 
+ 1 (15) 

Recognizing that C/>A/CAA 'S = CA
A = KA

_ I and that </>s = 
1 — 4>\ allows some reorganization. Further, for comparabi­
lity and convenience we may now drop the superscripts A,S 
and write only C Q and CA, the apparent initial concentra­
tions in the whole system. Thus, we arrive at 

CO1- 1 , T1 • ^A E A - I I HM 

A KilKoxCAt L K1' K . ' K D ' J . (l0> 

The left-hand side is the normal group of the Benesi-Hil-
debrand (B-H) equation and the right-hand side is, clearly, 
formally equivalent also. Thus, MP theory provides a ratio­
nale for the uv-visible technique. 

The nominal stability constant, K\uv, derived via the B-H 
equation is defined by the ratio, intercept/slope, of a plot of 
the lhs of eq 16 against 1 /CA. Using (16) to evaluate this 
quantity and eliminating K D 1 via (e), we find 

K,uv = 
K 1

1 K R (A) 
O.t 

K • + 
R(S)" 

A K R 0 - ' K A 

K R ( S ) ° 
(17) 

which is obviously identical with eq 12, whence it follows 
that, in principle 

K, G L C = K,UV (18) 

Furthermore, we see that when Ki1 = 0, eq 17 reduces to 
the general equation1 

K r = A K R ° K A / K R ( S ) ° (19) 

NMR. The chemical shift (<50bsd) of a donor proton, parti­
tioned according to MP theory, between two immiscible liq­
uids, A + S, has been shown2 to be given by the relation 

5obsd = Y.Pi&i 

where Pt is the probability of the proton being in the /th en­
vironment, and 5, is the chemical shift when the donor is in 
pure /'. 

In the case of the more comprehensive model now under 
examination the expression becomes 

<50bsd = / V V + ^AD<5AD + ^ V s 0 (20) 

Since "ZPi = 1, eq 20 can be re-formed into 

50bsd = PAX(&A1 — 5 A D ) + <>AD 

i.e., 

where 

/ V = (50bsd - 5 A D V ( V - 5AD) = A/A0 ' ' (21) 

A0'' = 5A' - 5A D 

We can, alternatively, define / V in terms of moles, as 
earlier: 

PA1=-
"D A.t 

(22) 
"ADA + "DS + "D A , t 

Dividing top and bottom by [CD
g(VA + Vs)], and recogniz­

ing that (KA + K s ) _ 1 = 4>A/VA = 0 s / ^ s , we find after 
some rearrangement and use of definitions (a)-(c), that: 

^ = P A ' = 0 A K R ( A ) ° 7 [4>AKR (A)° + 0 S K R ( S ) ° ] (23) 

From this point, substitution for <£s, for K R ( A ) ° from eq 9, 
and for 4>A with VACA, followed by rearrangements, yields 

j_ = 

A KR(A)" 

which is clearly the exact analogue of the usual equation 
employed to evaluate stability constants from N M R data. 
Again, the constant AT|NMR is evaluated from the intercept/ 
slope quotient of a plot of 1 /A against 1 / CA, hence, 

. ) ° ' ' K A C A A 0 ' ' + LKR(A) 0 ' ' K A J A0'' l 

JT1NMR _ K\ K R ( A ) 

K R (S) 

°'' A K R 0 ' ' KA 
+ • (25) 

KR(S) 0 

which is identical with the results derived for both the GLC 
and uv-visible cases. 

Discussion 

Earlier papers in this series1-3 have established that for 
all the solvent-solute systems for which adequate data are 
available, the general relation (eq 1) 

KR = 0AKR(A)° + (ASKR(S)0 

applies. The systems, in a number of instances, comprised 
components which could be expected, or have been postu­
lated, to interact by charge transfer, hydrogen bonding, or 
solvation. In other cases, no specific interaction has been or 
could be readily visualized. Nevertheless, we have shown 
that this coherence of behavior, embodied in the above 
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equation, is an automatic consequence of MP theory re­
gardless of the presence (or absence) of complexation, hy­
drogen bonding, or solvation in either additive or solvent. It 
must be recognized that all the solvent mixtures under dis­
cussion are relatively involatile. It might hence be argued 
that diachoric behavior typifies "large" molecules only. 
However, we have established3 that diethyl maleate-quino-
line mixtures also behave as diachoric solutions, as do sili­
cone polymer mixtures. It is therefore difficult to reconcile 
this observation with the premise that molecular size alone 
is the criterion for diachoric solution behavior, since it 
seems no more credible to associate diethyl maleate with a 
silicone polymer than with some other, "smaller", molecule. 
We are thus led to the view that eq 1 could well be found to 
describe the behavior of solutions of a more "classical" 
kind. Unfortunately, an immediate test is precluded since 
the literature contains no data corresponding to infinite 
dilution studies of a third component in such a binary mix­
ture. Furthermore, other than in the GLC literature, parti­
tion coefficients are rarely if ever measured or cited, since 
in conventional solution studies, emphasis is placed on the 
activity coefficient. It is worthwhile to point out that the 
latter has no intrinsic advantage over the former since they 
are always explicitly related by a simple function, and, al­
though it is not generally stressed, the activity coefficient is 
defined relative to the gas phase and is, hence, a compara­
tive quantity linking the liquid and gas phases; the partition 
coefficient describes this link directly. In light of the above, 
it seems that an area of immediate interest is a re-study of 
some of the "classical" solutions via the GLC molecular 
probe approach embodied in our investigations. We propose 
to attempt this in the immediate future. 

Turning now to the matter of specific interactions, the 
foregoing has shown that, all other things being equal, the 
GLC, NMR, and uv-visible techniques should yield the 
same result for A|exp". In practice, of course, considerable 
discrepancies are often noted. We will return to these later 
since we must deal first with the question of what, if any­
thing, ATiexptl means. 

For simplicity we consider only the 1:1 interaction case 
and, for this, our derivation shows 

K^.£f*£ + *!jl** (26) 
AR(S) AR(S)" 

from which the following inequalities arise: AR(A)0-' > 
A-R(S)0, AVxptl > AV; A-R(S)0 > A-R(A)0-', A,< > A,exP". Ob­
viously, only when ATR(A)0'' = ^R(S)0 can Ai1 = AVP". Ac­
cording to this, therefore, only rarely do experiments yield 
anything better than an approximation to Ai'. The key fea­
ture of eq 26 is that it quantitatively describes so-called sol­
vent effects. For strong complexes these are explicitly de­
fined by AR(A)0,1/AR(S)0, since then the second term in eq 
26 is trivial. For weak complexes, the term containing V\ 
may contribute significantly. Indeed, it can be responsible 
for values of A|exp" being zero or negative. Thus, for exam­
ple, if Aiexp" = 0, the theory requires that 

A,' = - A A R ° ' ' K A / A R ( A )
0 ' ' (27) 

Since Ai' cannot be negative, AR(S)° > A'R(A)01. The range 
of VA common to the organic liquids usually studied is 
0.1-0.5 1. mol-1 so that, for the smallest meaningful value 
of A,', ca. 0.1 1. mol-1, the range of AR (S) 0 /AR (A, 0 ' ' de­
manded is only 2 to 1.2, a very reasonable situation. For a 
strong charge transfer or hydrogen bonded complex, Ai' 
might be as big as 4.5 1. mol-1 in which case AR(S)0/ 
AR(A)0'1 must range between 50 and 10 for A,exPl1 = 0. 
Such partition ratios between solvents are quite common­
place. 

If, of course, 

*•'<[%$•->h 
then AiexP" will appear negative with a limiting value of 
KA; thus, negative values in the range —0.1 to —0.5 1. mol_i 

might well be regarded as not unexpected. However, it must 
be emphasized that, if the explanation of negative Aiexp" 
lies in the above, the theory still demands that the same re­
sult be obtained by the GLC and spectroscopic methods. In 
all instances so far published, negative spectroscopic data 
are accompanied by positive GLC results. The explanation 
is therefore somewhat more complex than the above, al­
though it may be a contributory factor. We propose to pub­
lish later an account of a number of systems where all tech­
niques yield zero or negative values of about the same mag­
nitude. 

Returning now to the matter of discrepancies in pub­
lished Aiexp" values, two contributory factors can immedi­
ately be identified. First, the B-H (and its variants) equa­
tion is a poor vehicle for data evaluation; even trivial experi­
mental errors can quite remarkably affect (intercept/slope) 
quotient calculations. This matter has been the subject of 
major discussion over the years and is widely recognized: 
Second, the normal condition of the GLC experiment is 
that D is at infinite dilution, A is at some finite concentra­
tion, and S is generally in excess, whereas in contrast, in the 
spectroscopic experiment, A is at high (though not infinite) 
dilution, D is at finite concentration, and S is usually in ex­
cess. The latter situation is demanded experimentally in 
order to provide separation of the charge transfer band or to 
induce a sufficient chemical shift. Thus, the published in­
formation, as so far provided, does not relate to the same 
systems in terms of MP theory. Hence, since the relevant 
partition coefficients of D, for instance, are certainly con­
centration dependent, it could not be expected that substan­
tial agreement need be observed. 

Of course, it must be recognized also that there are basic 
assumptions and approximations involved in the spectro­
scopic methods which may be invalid in practice. In this 
case, no correlation with GLC or even between NMR and 
uv-visible could be expected. Finally, we must take into ac­
count the possibility envisaged in part I1 that the solution 
and spectroscopic ATjexptl values derive from different 
sources. Martire,6 for example, has suggested that GLC 
(solution) data reflect not only charge transfer or other 
complexing, but also collisional pairing in the system, 
whereas the spectroscopic methods provide information re­
garding only the former (it is, perhaps, significant that 
K\GLC is normally greater than is Aispect). This possibility 
can be readily accommodated in MP theory simply by in­
troducing an extra equilibrium constant into the general 
complexing eq 28, such that AiGLC = Aspect + A,co11. This 
would only add a simple term to the correlation equations 
involving the GLC data which follow. Only when much 
more (and more accurate) information of the right sort is 
available can we proceed to distinguish between the above 
possibilities. 

In part II2 we showed that GLC and NMR data could be 
correlated remarkably well even though the derived values 
of Aiexpl1 were in only modest agreement. We now consider 
a comparison of the usual forms of the GLC and NMR 
equations: 

AR = A R ( S ) 0 [ 1 + A , G L C C A ] (28) 

A0 1 
A" = A , N M R C A

+ 1 ( 2 9 ) 
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Figure 2. Plot of C\ljA vs. 1/A for toluene and trinitrofluorenone in 
the solvents: di-M-butyl succinate (O), di-n-butyl adipate (O), and di­
rt-butyl sebacate (•) at 400C. 

where CA = C\A'S in our earlier nomenclature. By equat­
ing K]CA, we found1 that 

A = 4>AKR{A)°A°/KR (30) 

and a plot of values of A against those of 0 A ^ R ( A ) ° / ^ R for 
the same value of CA were linear, of slope A0. By an identi­
cal procedure, using the B-H form of the uv-visible equa­
tion, we get 

from which we see that, for equal values of CA, 

A/CDl = 6^AAATR/ KR (32) 

A plot of the lhs against 4>\/KR should therefore be lin­
ear, of slope eAÂ R, with zero intercept. Equally, of course, 
for pairs of data for equal CA, 

A/A0 = A/CDtl (33) 

It should be noted that the GLC/NMR correlation, and a 
check of calculated and experimental slopes of the plots ac­
cording to eq 30, were previously possible2 since A0 could 
there be measured since, in each case, both A and S were 
liquids. In the uv-visible case, however, e cannot be mea­
sured independently, and a test of either eq 32 or 33 can 
only be based on linearity and zero intercept at this time. 
Such linearity, of course, could provide a basis for indepen­
dent estimation of e via eq 33 if both A and S were liquids 
since then A0 could be directly determined. 

Fortunately, Purnell and Srivastava7 have reported com­
parative NMR and uv-visible data for the systems: aromat­
ic hydrocarbons with trinitrofluorenone in respectively di­
rt-butyl succinate (DBSUCC), di-«-butyl adipate (DBA), 
and di-M-butyl sebacate (DBSEB). We show in Figure 2a 

representative plot of these data for toluene in the form re­
quired by eq 33; the results are obviously in good accord 
with the theory. However, the B-H evaluated K]exptl values 
were:7 DBSUCC (uv, 0.116; NMR, -0.019; DBA (uv, 
-0.030; NMR, -0.01); DBSEB (uv, -0.008; NMR, 
0.053). Although the extent of disagreement of the A îexP" 
values listed is not large, it is worth noting that the ratios, 
e/A°, evaluated from the B-H plots differ from those de­
rived from Figure 2 by up to a factor of 3. This, if nothing 
else, emphasizes the problems of intercept evaluation of 
B-H plots and seems to us to indicate that eq 33 might pro­
vide a good basis for future data evaluation. 

We have now shown that the concept of localized aggre­
gation in binary mixtures provides a quantitative descrip­
tion of all the available data and that it can accommodate 
any detailed solution mechanism that may be postulated. 
Further, it provides a rationale for the conventional spectro­
scopic approaches to studies of interaction in solution and 
an explicit description of the hitherto vague term, "solvent 
effects", even to the extent of accounting for "negative" 
equilibrium constants. We recognize clearly that the ac­
count given up to now is still of a very general nature and 
that cogent arguments against local aggregation can be ad­
vanced. It seems to us, however, that it would be precipitate 
to introduce at this point any significant attempt at detail 
since the extent of the generality of our basic equation has 
still to be finally determined. 

One last point in support of our general premise may be 
made. The conventional view of complexing in D/A/S mix­
tures (wherein D and A are molecularly dispersed) requires 
that the stoichiometric stability constant, being only an 
equilibrium quotient, should normally be concentration de­
pendent on account of varying activity coefficients. It is a 
remarkable feature of the literature on weak complexing 
that, in contrast to expectation, B-H (or its variants) type 
plots are virtually always linear. This matter has been the 
subject of substantial discussion in the literature and never 
yet satisfactorily explained. In the present theory, of course, 
no nonlinear effects would be anticipated when D is at infi­
nite dilution and they would be minimal even at finite con­
centrations. The full weight of evidence from the literature 
on complexing may thus be argued to support the present 
view. 
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